
Jim Hawkins Dartmouth BASIC Language Interpreter

V 4.0 2022

Updated 2/6/2022

PREFACE

This interpreter is strongly based, in style, to the original Dartmouth BASIC, designed by two

professors at Dartmouth College, John G. Kemeny, released in 1964 at Dartmouth College and

is intended as a quick and handy interpretive (write and run) language. It is extended from the original

BASIC, but not so far extended as to be unrecognizable as the original BASIC as many other Good

products given the BASIC name, such as Visual BASIC. The BASIC name is an acronym that stands for

Beginners' All-purpose Symbolic Instruction Code. It consists of simple, line numbered statement or

command strings of the form:

Line Number Statement Expression………………………..

Line Number Statement Expression or, in particular:

100 if a > b then 400

 language that can be handy for writing one’s own utilities. The original set of commands and

statements are implemented so an older BASIC program can be loaded. Being aware that most original

BASIC programs were in all uppercase, a special load commands, lcold filename has been provided. So

that uppercase programs as converted to lowercase as they are loaded. If it is saved, the file will be

lower case. The first example at the end is a Celsius to Fahrenheit conversion table generator. It both

displays the table on the monitor and writes the table into a file, which can be printed.

As for the “holy war” arguments of line numbers vs no line numbers, gotos or no gotos, long variable

names; think of it this way: there are plenty of BASIC programmers who prefer the old line numbers,

tolerate the short tags variable names, still like gotos can be compared to people who still like LPs over

CDs or digital music files, people who prefer old typewriters to modern word processing software, old

cars, especially from the 50s and 60s, are no less valid than people who want more, updated BASICs.

This version does provide structured “ifs”, “while” loops in addition to “for” loops, so you could write a

program without using gotos. When I program in the C or C++ languages, it almost never occurs to me

to use a goto. It comes naturally. But, if people still like to write “spaghetti” like code, I have no

criticism as to whether it’s some sort of sin. To each his/her own. I confess that this interpreter has

exactly ONE goto in over 10,000 line of code. I was a convenient and quick solution to situation where

trying to use a “while” was a little too messy for me and the time I would have to spend to restructure it.

https://en.wikipedia.org/wiki/Dartmouth_College
https://en.wikipedia.org/wiki/John_G._Kemeny

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

OR:

================|
======================|
=========================|
========================|
===================|
============|
=======|
======|
=========|
================|
======================|
=========================|
========================|
===================|
============|
=======|

It can serve as a quick algebraic expression computer as in:

print 3.14*33/2*sin(30)*(33+22+11)

and so on. Notice that it can be typed in without a line number for immediate calculation. I wrote the

expression evaluator. The precedence of operators are guided by a simple operator precedence table.

I wrote the original version to work on my DOS computer, many years ago, but the saved source code

just sat there as I moved into Windows. It has been a challenging job just to port it as a console

application written in the C programming language as C has evolved to meet an ANSI standard with

more strict rules. In the process of testing it, I found many “bugs” and fatal errors causing program

crashes. Most of them are fixed, but I know there are more. Some functions were completely rewritten

in the last four months.

I plan to offer it as open source, for others to play with or expand, but not until I post some algorithms

for others to use, free of any license or charge.

BEFORE GETTING STARTED

Upper case BASIC programs may be loaded using the lcold command. Caps are converted to lower case

as it is loaded into the interpreter.

File paths use backslashes and disk drives, to denote file paths such as

 \ folder1\folder2\file

OR

c:\folder\file

Desktop icon It makes it easier to create a desktop icon by right clicking on the BASIC executable and

choosing Send to > desktop icon and/or pin to Start menu

 Improving console appearance When you first start this program, you will undoubtedly get a tiny

black console window. Click on the upper left corner icon, select and chose “size” as 24 or 28. You

can even chose Font > Bold font. After making these settings, they will be “remembered” and the app

will start with these settings.

1. Conventions

This Manual: All things enclosed in [] are optional

expr Any algebraic expression which could be a constant, variable, math function or a combination of

the aforesaid, separated by arithmetic operators as in:

 a+b*3.14*(4.4+c2*sin(b+s)) +a(2,2) See "variables' and "math functions" below.

Note that whenever an array is specified with dimension(s) containing variables, those variables must

have been assigned a value through let or read commands.

Operators: + - * / % or ^ for addition, subtraction, multiplication, division, modulo, or exponentiation

in. order of lowest to highest precedence. + and - have the same precedence and *, /, and % have the

same precedence. Parenthesis () around expressions forces the contents to be higher precedence than

all parts of the expression outside, those parenthesis. Note also that when the ‘-‘ is used as a unary it

maintains its low precedence, hence the expression -2^2 yields 4 instead of 4. In all cases a good rule of

thumb to ensure precedence is to enclose the part of high precedence in parenthesis, thereby (-2)^2

yields 4.

Operator Meaning X if not implemented

() parenthesis

^ exponentiation

*
/
%

Multiplication
division
modulo

+
-

Addition
subtraction

>
>=
=

<>
<=
<

Greater than
greater than or equal to
equal to
not equal to
less than or equal to
less thans

not ! Binary compliment X

and && Binary and

or
xor
exp
imp

||
X
X
X

 ,

Relationals: <, >, =, <=, > =, <>, or, and, ||, && for less than, greater than, equality, less or equal,

.greater than or equal, not equal, logical or and logical and. Source Program Name The source program

name is suffixed by a .bas

Statement A basic statement consists of a line number. (integer value between 1 and 65534 (on 32 bit

machines) followed by a command; space and operand which follows the syntax governed by the

command as in:

100 print "Hello World"

A statement can be typed without a line number in which case it will execute immediately. This is true

for all commands, but doesn't make sense for a command such as for. Immediate execution is handy for

diagnostic purposes such as print x. for some commands.

Strings Sequences of ASCII characters, enclosed by double quote characters or may be represented by a

string variable x$, y3$, p$(j, k, l).

String Variables String variable names are followed by a dollar sign ‘$’ as in a$, x3$, etc. They currently

wile work for Let command, Read-Data statements, and print, as in:

2000 let a$ = “Hello “

2100 let x2$ = “World”

2200 print a$;x2$

or they may be added together:

2200 print a$ + x2$

Matrix Variables are named the same as regular variables, but are distinguished by the commands that

operate on them. However, the variable names, as seen in the operations, are those of corresponding

array variables. Hence, variable ‘a’ corresponds to a(row, column). They must be dimensioned with the

dimension statement, but only the name of the array is used in matrix operations.

Another example:

2000 let a$ = "Jim "

2050 let b$ = "Hawkins"

2055 read x$,y$,z$

2100 data a$,b$,"is a programmer."

2200 print x$;y$;z$

Note that the data statement mixes 2, pre-defined string variables and a literal string.

Variables Regular variable names can be either lower case or upper case alpha (a-z) or (A-Z) with or

without an integer subscript (0-9). The lower case and upper case can co-exist in a program and

represent different variables. That is, ‘A’ and ‘a’ are two different variables. Arrays have the same name

convention as regular variables and take the form: varname (expr1, expr2, expr3. . . .expr 10) where

expr1 - expr 10 are the dimension attributes of the array and can take the form of any legal expression.

Array variables are first allocated with the dim command. In the case of array names, the upper case

names are not separate, but name the same variable. That is, A(20) is the same as a(20). This may be

changed in the future.

Arrays can have another array as one of its values!

2000 DIM A(10),B(10)

2200 LET B(2) = 9

2300 LET B(1) = 8

2400 LET A(B(1)) = 22

2500 LET A(B(2)) = 33

2600 PRINT A(B(1));" ";A(B(2))

2700 DIM W(10),X(10),Y(10),Z(10,10,10)

3000 LET W(1) = 4

3100 LET X(1) = 5

3150 LET Y(1) = 6

3200 LET Z(W(1),X(1),Y(1)) = 340

3300 PRINT Z(W(1),X(1),Y(1))

3400 DIM P(10)

3500 DIM Q(10,10)

3600 LET Q(5,5) = 9

3650 REM Multiple dimension arrays nested inside other arrays illegal at this time

3700 LET P(Q(5,5)) = 22

3800 PRINT P(Q(5,5))

COMMANDS AND STATEMENTS

ascii [flag]

Where flag = d, o, x or a Prints out ASCII value
table. Added for my convenience. Not a normal
part of BASIC. Flag d (default) decimal, o is octal,
x is hex and a is all three.

auto [start line#] [,increment]

Turns on auto line number and increment]
Defaults to 10,10
Terminate with a decimal point or period ‘.’

bye or q

Exit the interpreter. The ‘q’ command will give
you the chance to confirm that you want to quit.
Bye will just quit.

call <expression> “<overlay
name>”,<line number>

Call overlay and execute it.
Allows programs to be segmented into
overlays, which are initially not loaded. It
loads the overlay file or program, if not
already loaded, then executes i. Overlays
must end in return. First line needs to be a
rem <overlay name>
Overlay must be in quotes. A string variable
can be used, instead.
When compared to a regular for loop of
500,000,000 iterations, the call is only 5%
slower roughly.
The loop around call is about 37 seconds and
the ordinary loop is 35 seconds.

4700 call "square_f",10000
4800 rem

10000 rem square_f
10100 let y = 0
10200 let u = 0
10300 let s = 2
10400 let u = sum((1/h)*sin(h*a),h,o,1,n)
10800 let y = 10*u+15
.
.

Commented [J1]:

11000 return

loadcall <expression> “<overlay
name>”,<line number>

Same as call, except, previous overlay(s) are not
cleared, allowing combining of overlays.

com [mon]

Preserve variables for subsequent run. Issue of
the run command otherwise de-allocates all
variables. NOT IMPLEMENTED

con [line#]

Continue normal execution from single step
mode. See step command

data (expr), (expr), (expr)

The data statement is a string ,of defined
constants or expressions referred to by the
"read" statement. Unlike most BASIC
interpreters, the data is stored only in the
form of text strings which allows the read
statement to evaluate expressions as well as
constants.

Types of variables, my be mixed string and numeric
1000 read w, a$, x, b$
2000 data 3.3,”Laurel, Stan”,4.33,”Hardy, Oliver”

Quotes may be left off of strings if there are no commas or spaces.

del [ete] lownum [,highnum]

Delete line-number specified if only lownum
given. Delete all lines between lownum and
highnum if both are specified. See the undo

command. If the lownum doesn’t exist, it starts
the deletion of the next higher line number.

Commented [J2]:

dim <variable
name1>(expr1,expr2....,expr10),
<variable name2>(expr1
expr2........,expr10),…….

Allocate space and define the dimensional
characteristics of subscripted variable. Keep
in mind that the memory allocated is the
dimensions multiplied together along with
information tables used to form the array. Say,
an array is x(10,10), the memory used will be
10X10 = 100 along with the header
information. The “size” or “mem” commands
can tell you how much memory is used and
how much is available. The expunge command
will free up variable space taken up but arrays.

dim <string variable name>$(d1,d2,d3)

Dimension variable array up to three
dimensions. Naming convention is the same as
for numeric variables, except with a $ added, as
in: dim x1$(10,10)
A dim statement can have multiple arrays and
types separated by commas as in:

String array and numerical array arguments
may be mixed.
1000 dim x(10,10),a$(5,5),y(5,1), etc.

end

Define logical end of program. Causes
termination of current run. The same as
“stop”, except that stop displays the line
number where it stopped, whereas “end” just
stops the program. End is more desirable when
you are writing output data to a file and you
don’t want interpreter messages to appear in
the output file.

expunge

Force all variable space, including subscripted
variables to be freed. Or deallocate used
variable space.

files

 Displays the currently open file or loaded
BASIC program file, (if any) and any files open
for read, read, write or append. The highest
number of files allowed to be open in any
mode or combination of modes is 8. read, write
or append. The highest number of files allowed
to be open in any mode or combination of
modes is 8.

free[up] <array variable name>

Frees up individual array chunks previously
allocated by the dim statement..

gosub line# or variable with line
number

Goto a subroutine, resume from following
statement after return encountered.

goto line# or variable with line
number

Force execution to continue starting at the
line# specified.

If (expr1) relational (expr2) then
line#

Redirect program flow to line# if expr 1 is
related to expr2 by the specified relational. The
then in the then statement can be optionally
replaced with goto or gosub

Other forms of

 if

if (expr1) relational (expr2) then var = (expr)
(form 1)
if (expr1) relational (expr2) [(boolian) (expr3)
relational (expr4)] then [line number]
if-then-else-endif When no line number is
given, the “structured” if is assumed.

input [#filedes] [“prompt
message”;] 1var1[,var2,var3.....]

Input assigns the number values typed at the
input prompt, to the variables or array variables
specified in the command line such as: 1000
input a, b, c(2,2,2). An optional prompt message
can be added, informing the user what data is
expected. Note that if fewer numbers are
entered at the input prompt ‘?’ than the operand
or command line variables, the input command
will display a message telling the user that more
values are specified or type the letter ‘q’ to quit.
It will continue to ask until the number of comma
separated variables like, 20, 3.14, 98.6 is equal to
or more than the number of variable given in the
input argument. If extra entries are made, they
will simply be ignored. that the user fix the input
file and the BASIC program will rewind the file
and stop. Values can also be read from a file as
designated by #filedes. Message prompts are
disabled when reading from a file.

Input a$, b$, x$, p$(1,2,3)

input can also assign string values to string
variables or arrays, string values

let variable = <expr> Assign the value of numeric or string expression
to an appropriate type of variable.

list or (l) [lownum [,highnum]]

List the text in working storage. If lownum is
given then only that number is listed., if lownum
and highnum are specified, then a listing is
displayed between the given statement numbers.

load [program name]

Same as the old command, except working
storage is not cleared. This allows adding other
code to be added, providing that there are no
conflicting line numbers. (unless that is what you
want)

mov startnum, endnum, newnum
[,increm]

The mov command causes the lines, beginning
with startnum and ending with endnum to be
moved (ie. renumbered) to the line beginning
with newnum and incremented by increm. The
default value for incrern is 10. All references to
the moved lines are updated. The' user is
responsible to see that line numbers associated
with moved lines do not conflict with existing
lines which will cause loss of program text. mov is
similar to renum (see below) except that only the
specified lines are renumbered.

n

The n command lists 20 lines at a time. To
continue listing, type <ENTER>. To exit, type ‘q’.

new

Clear program working storage for new program
to be typed.

old [program name]

open [program name]
Clear user space and load program. If old is typed
with no argument it will prompt the user for a
program name if not defined or load the last
defined program name.

lcold

loads and converts a upper case BASIC program
to all lower.

on (expr) goto line#, line#

Is a selective goto with multiple line number
targets. The target branched-to depends on
the value of expr which is truncated. Control
is passed to the first line# specified after goto
if the value of the expression is 1. Control

passes to the second line# if the value is 2,
the third if 3 and so on.

on (expr) gosub line#, line#.......

Same action as on-goto, except action is that
of gosub.

on (expr) let var=num2,
[var=num1, var=num3,…….]

Chose which variable assignment

on (expr) call <“overlay
name”>,<start line
number><“overlay
name”>,<start line number>

On call selects one of the overlays to be
loaded and executed. Overlay must be
started with a rem statement with the
overlay name, The name must match the
filename without the .bas extension.

optrace [1] Debug tool
Prints a trace of the commands and
statements executer. Typing optrace with no
argument turns it off. The number can be
any number. It’s only purpose is to turn it
on.

x

pause

Causes execution to be suspended until a
"newline", or "return" is typed. This is useful for
programs which need to be continuously in run,
but need to allow a time for user action i.e. unit
insertion. Typing the letter ‘q’ while paused, will
stop execution or quit running the BASIC
program.

print [#fildes] (expr's, quoted
strings or tab operators)

The print statement is a limited format display
statement in which expressions are evaluated
and displayed along with quoted literals. The
tab(expr) operator causes the print head to move
to the absolute column position computed by
expr provided the current head position is
smaller. The specifiers must be separated by one
or more commas or semicolons. hex(expr) prints
the hex converted value of expr, but, unlike
oct(expr), hex() is not a math function, but only a
print function, because hex numbers in this
interpreter cannot be handled by the (double)
values of this interpreter. Note that the results
of base conversions are REPRESENTATIONS of the
converted print in floating point.

 Print command Print Zones (fields separated by commas)

| zone 1 | zone 2 | zone 3 | zone 4 | zone 5 |

 --

| 1-15 | 16-30 | 31-45 | 46-60 | 61-72 |

 The statement print a,b,c,d,e will cause the values of the first five variables
 to be printed, one number per zone. If more than five variables appearin a PRINT
 statement, the sixth value is printed on the next line in zone 1, the seventh, zone 2,
 and so on.

 Text example:
 100 print "FIRST COLUMN","THE SECOND COLUMN","THIRD COLUMN"

 | zone 1 | zone 2 | zone 3 | zone 4 | zone 5 |
 --

 | 1-15 | 16-30 | 31-45 | 46-60 | 61-72 |

 FIRST COLUMN THE SECOND COLUMN THIRD COLUMN FOURTH COLUMN

print using [#<file number>]<”format
string”> [,exprl,expr2 expr10]

Where the format string or string variable
representing the format allows you to specify
how the text and numbers are supposed to be
printed as follows:

print using “##.# degrees Fahrenheit converts to
##.# degrees Celsius.”,98.6,37.0

Adding $$ in front of the format string causes
dollar signs to be printed in a column before the
number.
Adding ** in front of the format string causes the
blank fill to be replaced with asterisks ‘*’
Adding $** in front of the format string enables
both the dollar signs and the asterisk filling.

Adding $$ in front of the format string causes dollar signs to be printed in a column before the
number.
Adding ** in front of the format string causes the blank fill to be replaced with asterisks ‘*’
Adding $** in front of the format string enables both the dollar signs and the asterisk filling.
Examples: print using “Total: $$#####.## dollars”,33.45
 Total: $ 33.45

print using “**#####.##”,33.45
Total: ***33.45

print using “$**#####.## dollars”,33.45
Total: $***33.45

 randomize Causes rnd() f to start at an
"unpredictable" value. The seed represents the
number of seconds that have elapsed since
midnight Jan 1, 1970, which is continually
changing.

read varl,var2,var3, var4$, var5$
.......

The read statement causes data from the data
statement to be assigned to each variable in the
list from the constant. Strings and variables need
to match the variable type being read.

rem

The remark statement causes no operation in
BASIC but may be followed by any string of
characters for the purpose of commenting a
program. They are of paramount importance in
making a program readable by human beings and
are, therefore, strongly recommended. As in:

rem //////// This is a comment /////////

// does the same thing as rem, but added to make comments less cumbersome looking as in:
 // ///////////// This is a comment ///////////
Note that a space must follow the double slash, otherwise the interpreter will see the whole field as a
BASIC command.

ren[um] startnum [, increm]

The renumber command causes the statement
numbers and all references to them (such as ifs
gotos, gosubs, etc.) to be renumbered starting at
startnum and incremented by increm. If startnum
and/or increm are omitted, the default values are
10 and 10 respectively.

restore [line number]

Restores the data pointer to the first field of the
first data. If a line number is specified, the data
pointer is restored to the data line at that
particular line number.

return Return from subroutine called by gosub
statement.

run [program name]

Run basic program specified. If no argument is
given, run attempts to execute whatever is
currently in working storage.

s[ub] line#/old-string/new-string/

Substitute in line line# the new-string for the old-
string. The last delimiter is optional, unless new-
string is null in which case it is desired that
oldstring be removed.

sing [line#] or step [line#]

 Enter the single step mode starting at the line#
specified or at the first line of the program if no
line# is specified. In single step mode an
instruction is executed and then the prompt " is
displayed. At this time the user may enter any
command (i.e. print) or hit the "return" key to
execute the next instruction. See the con
command. Entering the letter ‘q’ while exit single
step mode.

size or mem

Causes amount of working storage used and
remaining. It also displays the number of
assigned regular variables and the amount of
space occupied by all arrays. Variables do not
occupy the same space as the program and array
variables are allocated and stored in “heap”
storage as allocated by the C language calloc()
call. Calloc() fills the data space with zeros.

stop

Stop execution of program, giving the line# of the
stop command. The end command does the
same thing but without the message.

save [program name]

Save the contents of working storage specified by
program name. If no program name is given, it
referenced file-name is used. If no file name was
referenced, the user is prompted for a name.
The default load and save folder is the one that
this executable resides in. Otherwise, a complete
path or one relative to the folder that this
executable resides in as in:

save filename, old or load filename or save
c:\<folder>\filename

time

displays time DDD MMM, DD, YYYY HH:MM
AM/PM such as:
 Sat Oct 28, 2022 12:40 PM

undo

Undo last s command or single line deletion

v

prints the current version number and date.
Mainly used by me to remind me of what version
I have loaded, when I am comparing to versions.

STRUCTURED FLOW COMMANDS

Use of these commands and statements could eliminate the use of gotos.

for- next

Cause code enclosed by this combination to be
executed under the conditions specified in the for
statement as in: for <variable> = <expression1>
to <expression2>. The step directive, tells the for
loop how much to step for each iteration as in:

 for x = 1 to 360 step 2.

if-then-else-endif
or
if-then-endif

Allows more control The file the test in if directs
to two different possibilities, condition met or
condition not met. Gotos or on gotos are not
allows within a structured if-then-else scope.

while

A new addition to this interpreter is the while-
endwhile loop. Either numerical or string
expressions may be used. In the case of
numerical expressions, all of the relational
operators may be used. With strings, only >, <,
<> and = are available. A logic operator such as
“or”, or “and” may be used to include two
expressions. You may also use && or ||. NOTE:
An infinite loop may be gracefully stopped by
typing CTRL-C. CTRL-BREAK terminates the
interpreter.

break can be used to break out a loop like for-next or
while-endwhile before the final condition is met

continue forces continuation of for loop like for-next or
while-endwhile before loop condition is met

MATRIX COMMANDS, FUNCTIONS AND OPERATORS

MATRIX COMMANDS

mat print [#n]<matrix
variable>[,][;]

prints a matrix in row, column form. If the matrix
name is followed by a semicolon, the matrix is
displayed closely spaced. If it is followed by a
comma, the matrix is displayed in larger spacing.
With no delimiter, it is printed somewhere in
between. [#n] is an optional output file slot.

mat read <mat variable name> Can fill an entire matrix from a data line in one,
simple statement.

100 dim a(3,3)
200 mat read a
300 data 4,3,6,4,3,7,5,3,7

mat input <mat variable name>

Allows input of individual matrix members.
Implemented for one-at-a-time entry instead of
multiple entry by commas. Input prompt
includes array member being assigned.

MATRIX ALGEBRA

mat <mat variable> = <mat variable

1> + < mat variable 2>

 Matrix addition. Assigns the sum of the two
right matrix variables to the left matrix variable.
All matrices must be the same dimensions.

mat <matrix var> = <mat var 1> - <

mat var 2>

Matrix subtraction. Assigns the difference of the
two right matrix variables to the left matrix
variable. All matrices must be the same
dimensions.

mat <mat var> = <matrix var 1> * <

mat var 2>

Matrix multiplication. Assigns the product of the
two right matrix variables to the left matrix
variable. The row dimension of the first right
matrix variable must be the same as the column
dimension of the second right matrix variable.
Swapping the two right matrices causes different
results. That is A*B != B*A

mat <mat var> = <matrix var 1> cross

< mat var 2>

Matrix cross product

mat <mat var> = <matrix var 1> dot <

mat var 2>

Returns dot product of two matrices

mat <left matrix variable> =

(<scaler>)* <right matrix variable 1>

Matrix multiplied by a scaler number or variable.
The scaler can be an algebraic equation, but
without parentheses in the equation. As in:
mat a = (2)*b or mat a = (6/2 + 2).

MATRIX MATH FUNCTIONS

mat i = inv(a)

Create an inverted version of matrix a on matrix
i. Works for matrices from 2X2 to 8X8!

mat a = trn(b)

Create a transposed version of matrix b in matrix
a

mat c = con(a,b)

Create a 1’s filled matrix c of dimension a x b,
where a and b are variables

mat c = zer(a,b)

Create a zero filled matrix c of dimensions a x b,
where a and b are variables

mat I = idn(n)

Create an nXn identity matrix.

100 dim a(3,3)
200 mat read a
300 data 4,3,6,4,3,7,5,3,7
or
300 data 4,3,6
400 data 4,3,7
500 data 5,3,7

Commented [J3]:

1000 dim x(2,4),a(2,2)
1100 let a = 22
1200 let b = 33
1300 let a(1,2) = 3.14
1400 mat input x
1500 mat print x

% run
x(1,1) ? 1
x(1,2) ? a(1,2)
x(1,3) ? 3
x(1,4) ? a
x(2,1) ? b
x(2,2) ? 22
x(2,3) ? 33
x(2,4) ? 44

 1 3.14 3 22
 33 22 33 44

COMPLEX NUMBERS

Complex numbers live in single dimension arrays. It contains 2 values, first is the
real number portion and the second is the imaginary number. So, if you want to
allocate or “create” a complex number, you need only use the dim command. A
complex number with the name of x would be defined by dim x(1,2), which is 1
row and 2 columns. The first column x(1,1) represents the real portion and the
second column represents the imaginary portion. So. X(1,1)=3 and x(1,2) = 4 is 3 +
4i.

COMPLEX NUMBER COMMANDS

complex print [#n]<complex
variable>[,][;]

prints a complex number in a+bi form
#n is an optional file slot if desired with an
open file for output.

complex read <variable name> Not yet implemented

complex input
<variable>[,<variable>,<variable>..]

Requests input of real and imaginary values
of M<variable name>

COMPLEX NUMBER ALGEBRA

complex <variable> = < variable 1> + <
variable 2>

Sum

complex <var> = < var 1> - < var 2>

Difference

complex <var> = < var 1> * < var 2>

Product

complex <var> = < var 1> / < var 2> Quotient

complex <left matrix variable> =
(<scaler>)* <right matrix variable 1>

Complex number multiplied by a scaler
number or variable.

 COMPLEX FUNCTIONS

complex p=polar(c)

Converts complex number ‘c’ to polar form in
‘p’. Polar variable contains two array
elements. Magnitude and angle.

USER DEFINED FUNCTIONS

def fna(<variable1>[,<variable2>,<variable3>….])) = <equation containing the
input variable(s)>

The first two letters must always be “fn” followed by any letter in the alphabet from a-z. That gives you

26 possible user defined functions. The alphabetic variable passed to the function in the definitions

must be the same letter variable used throughout the expression. Why? Because in the interpreter

code, ‘x’ and the value of ‘x’ will be stored with its associated value. The equation is solved by the

expression evaluator using the same variable name. It’s equivalent to doing a let ‘x’ = 10, then solving

the expression as a function of ‘x’. The variables used by the user defined function are like local

variables, private to the definition, using separate variable table for storage. This makes it possible to

set a normal variable that is not disturbed by the function defined variables. The equation or formula

itself is stored in dynamically allocated memory. The function is internally flagged as “defined.” User

defined functions should be among the first lines of the program, like dimension statements -or- at least

before they are used.

2000 def fnx(x) = x ^2 + 2* x - 20

2100 def fnx(q) = sin(2*q) + cos(45+q)

run

20632.14

Usage: Once defined, the function can be used in the BASIC program in the same way that all other

mathematical functions are used. Functions must be defined before (lower line number) their use. A

particular function, like fna(), may be redefined at a later (higher line number) by the same function.

The old one is deleted and memory freed. A defined function can have any number of arguments.

Nesting of defined functions is also possible and the same variable name may be reused as each

instance of the function has its own private variable as in:

1000 def fna(x) = 2*x

1100 def fnb(y) = 2*y

1200 def fnc(z) = 2*fnb(2*fna(z))

1300 let a = fnc(5)

1400 print a

run

80.0

fna() returns 5, which is passed into fnb(), multiplying it by 3, yielding 15.

Fourier series defined in fnf to 6 odd harmonics then asterisk plot of square wave

1000 rem // Solve and plot fourier series summation out to 6th odd harmonic

1100 rem // for square wave using user defined function

1200 def fnf(x) = sin(x)+sin(3*x)/3+sin(5*x)/5+sin(7*x)/7+sin(9*x)/9+sin(11*x)/11+sin(13*x)/13

1300 for a = 0 to 720 step 40

1400 let f = 10+10*fnf(a)

1500 gosub 1800

1600 next

1700 end

1800 for p = 0 to f

1900 print " ";

2000 next

2100 print "*"

2200 return

FILE COMMANDS
The file commands: append, openin, and openout are followed by one or more file-names separated
by commas. Files are assigned to designators (integer values between 1 and 8 inclusive) in the order
that they are open. All commands such as print and input which refer to a file use the designator
number preceded by a character to refer to that file.

100 print #1"hello world" or 100 input #3a (x,y)

append file1,file2 file4l

If file exists open for output cause new data to be
appended. If file does not exist, the named file is
created.

openin “file1 or string
variable”[,”flle2”” file4”]

Open file for input.,. File must exist.
Arguments can either be literal quoted string or
string variable assigned by let or read commands.

openout “file1 or string
variable”[,”flle2”” file4”]

Create, named file(s) and open for output. If
named files exist, the old. data is destroyed.

closef #fildes Close file associated with file designator.

closeall Close all files input and output.

files

Displays the currently open file or loaded BASIC
program file, (if any) and any files open for read,
read, write or append. The highest number of
files allowed to be open in any mode or
combination of modes is 8.

-

STRING FUNCTIONS

fnum[ber]$(<format string>, <number>) Format number according to format
string pattern. This can be used in
the print command giving it the
flexibility to mix in formatting like
the print using command. Works
well in zone spaced expressions.

Use of fnum$ in print to generate formatted columns in zones.

1000 print "first column","second column","third column"
1100 print "Larry ";fnum$("##.##",33.3),"Moe ";fnum$("###.##",444.4),"Curly ";44.4
1200 print " ";fnum$("##.##",33.3)," ";fnum$("###.##",4.4)," ";4.4
1300 let x$ = "##.##"
1400 let y$ = "###.##"
1500 print "Larry ";fnum$(x$,33.3),"Moe ";fnum$(y$,444.4),"Curly ";44.4

first column second column third column
Larry 33.30 Moe 444.40 Curly 44.4
 33.30 4.40 4.4
Larry 33.30 Moe 444.40 Curly 44.4

left$(<string literal>, n) return first n characters of the given
string

right$(<string literal>, n) return last n characters of the given
string

mid$(<string>,p,n) or ext[ract]$ extract substring from string at
position ‘p’ with ‘n’ characters

str$(<numeric expression>) converts numeric expression to string

string$(n, <char>) repeat char ‘n’ times

loc$(<string>) change all uppercase to lowercase

upc$(<string>) change all lowercase to uppercase

chr$(<single character>) convert <int> convert integer to ASCII
character

time$([n]) Returns Day Date and Time of day.
Format: DAY MON DD HH:MM:SS
YYYYwhere n is optional: n = 0, 1, 2

time$

where n = 0 or no arg DAY MON DD HH:MM:SS YYYY (23 Hour)

 n = 1 DAY MON DD, YYYY HH:MM (24 Hour)

 n = 2 DAY MON DD, YYYY HH:MM AM/PM

MATH FUNCTIONS

abs(expr) Absolute value.

asc{“<char>”) Return numeric value of ASCII character

atn(expr) Arc-tangent.

asin(expr) Arc sin

acos(expr) Arc cosine

cos(expr) Cosine.

exp(expr) Natural exponential.

fact(expr) Factorial or gamma function

Int(expr) Integerize, or truncate fractional part of
result of expr.

 100 input s
200 for x = 1 to 3 step s

300 print tab(10*fact(x));"*"
400 next x

log(expr) Natural log.

rnd(n) Return pseudo random number between
0 and 32767. The randomize command
seeds the random number with a
continually changing time. See:
randomize

sgn(n) Return 1 with the same sign as n
sgn(-4.3) = -1, sgn(100) = 1

sin(expr) Sine.

sqr(expr) Square root.

sum(<expression>,<loop variable>,
<mode>,<start number>, <end number>)

Series summing function.
1200 print sum("1/fact(x)",”x”,”a”, 0, 6)
Using this rather than a BASIC “for” loop
is about twice as fast. It would be useful
when you have millions of computations
like in games or particle acceleration.

prod(“<expression>”,<loop variable>,
<mode>,<start number>, <end number>)

Series product function.
1200 print prod(x , x, a, 0, 6)
Gives 6 factorial
Quotes are optional around non
numerics.

timestamp() Circular count in seconds up to 99999
seconds before going back to 0

det(<matrix>) is a function that returns the
determinant of an array or matrix. The
array or matrix must be square, rows =
columns.

len(<string>) return length of string literal or variable.

pos(<string>,<key character>[,offset])

Returns position ‘p’ of character <key
character> within string <string> with
optional starting point <offset>

diff(<expression>,<variable used in
expression>,<variable point>)

Returns the numeric value of the
derivative of the expression at point
<variable point>

gcd(<number1>,<number2>) Returns greatest common denominator.

avg(<number>,<number>,<number>,…) Returns average of given numbers.

vlength(<array name>) Returns length of vector

.

4. Modes of Operation

4.1 Editor or Idle Mode

When the BASIC interpreter is invoked with no argument, a prompt " appears meaning that the

interpreter is waiting for the user to enter something from the keyboard. BASIC is then said to be in the

Editor or Idle mode.

Editing is accomplished as it is in any, BASIC language interpreter in that lines are entered by typing a

line-number followed by the statement and removed or deleted by merely typing the line-number.

Listing is accomplished with the list or ‘l’ command (explained under "Standard Commands"). In addition

to the above, it is possible to list single lines by typing the <ENTER> key in which case the program is

listed one line-at-a-time, starting at the first. When the last one is reached, the sequence starts at the

first line again. At any time it is also possible to type the symbol to "backup" a line-at-a-time. Other

editing facilities are s delete, and reseq/renum also explained under "Standard Commands".

4.2 Run Mode

If the run command is typed and a program is currently in user storage, the program begins execution,

starting with the first line of the program, then executing each line in order of line numbered sequence.

The sequence of execution is altered by program flow control statements like jr, for-next or any

statement, containing a goto.

4.3 Immediate Execution Mode

Immediate execution is accomplished by typing a command without preceding it with a line number.

Although this is possible with all commands, it doesn't always make sense. For example, using

commands that control program flow in immediate mode is unlikely and often disastrous.

Immediate mode is designed so that the user may get immediate action as in the command run or print

a. Some commands are almost always used in immediate mode such as q, delete, expunge, load, list, old,

renum, save, etc.

4.4 Single Step Single step mode is entered with the sing command and exited with, the con command.

During this mode,' one may find "BUGS" in the program by observing the program flow or sequence or

examining the values of variables at given points in the program to see if they have the expected values.

See sing or con under the "Standard Commands" section of this paper.

5. Interruption of program ctrl-c or ctrl-break good for termination of infinite loops.

6 Error Messages

Diagnostic error messages are issued by the interpreter which indicate syntax errors , system failure,

illegal commands or expressions, etc.

6.1 Standard Error Messages

NUMBER MESSAGE TEXT

0 REFERS TO A NON-EXISTING LINE NUMBER
1 UNRECOGNIZABLE OPERATION
2 CANNOT OPEN FILE
3 ILLEGAL VARIABLE NAME
4 BAD FILENAME
5 WORKING STORAGE AREA EMPTY
6 RUNS NESTED TOO DEEPLY
7 UNASSIGNED VARIABLE

8 EXPRESSION SYNTAX
9 BAD' KEYWORD IN STATEMENT
10 IMPROPER OR NO. RELATIONAL OPERATOR
11 UNBALANCED QUOTES
12 FILE EDITING NOT PERMITT ED IN SINGLE STEP MODE
13 MISSING OR ILLEGAL DELIMITER
14 GOSUB- WITH NO RETURN
15 IS. FATAL
16 UNBALANCED PARENTHESIS
17 UNKNOWN MATH FUNCTION.
18 NEXT WITH NO OR WRONG FOR IN PROGRESS
19 CANNOT PROCESS, IMAGINARY NUMBER
20 WHAT?
21 BAD' DIMENSION SYNTAX
22 TOO MANY DIMENSIONS
23 REDUNDANT DIM STATEMENT
24 NOT ENOUGH WORKING STORAGE SPACE
25 VARIABLE NOT DIMENSIONED
26 WRONG NUM ' OF DIMS
27 ONE OR MORE DIMS LARGER THAN ASSIGNED
28. NEG. OR ZERO DIMENSION. ILLEGAL
29 DIVIDE BY ZERO
30 BAD TAR SPEC. INPRINT
32 BAD FILE DECLARE SYNTAX
33 OUT OF DATA
34 FILE-NAME TOO, LONG
35 FILE DES. USED UP
36 FILE NOT OPEN FOR OUTPUT
37 FILE NOT OPEN FOR INPUT
38 EXPRESSION YIELDS AN IMPOSSIBLE VALUE
39 PRINTF: ARG COUNT MISMATCH
40 PRINTF: MORE THAN 10 ARGS
41 LINE TOO LONG FOR STRIP PRINTER
42 MOV REQUIRES 3 LINE #'s, SPACING IS OPTIONAL
43 BAD NAME OR LINE NUMBER AT BEGINNING OF SUBROUTINE
49 POSSIBLE EMPTY LINE IN INPUT FILE
50 NON-STRING IN STRING ASSIGNMENT
51 NUMERIC IN STRING EXPRESSION
52 INVALID STRING OPERATOR
53 CANNOT COMPARE STRING WITH NUM. TYPES
54 UNKNOWN STRING FUNCTION
55 OUT OF STRING RANGE
56 BREAK OR CONTINUE WITH NO 'WHILE' IN PROGRESS
57 FACTORIAL NEG. OR TOO LARGE
58 SEEK: SYNTAX ERR
59 SEEK FAILED
60 ILLEGAL SEEK MODE
61 REWIND: SYNTAX ERR

62 OPERATOR OR FUNCTION TYPE NOT VALID
63 INITIAL VALUE IN 'FOR' IS > FINAL WITH POSITIVE STEP
64 INITIAL VALUE IN 'FOR' IS < FINAL WITH NEGATIVE STEP
65 ARRAY MUST BE 2 DIMENSIONAL
66 MAT COMMAND MUST HAVE AN ARGUMENT
67 DIMENSIONS MUST BE THE SAME FOR MATRIX ADDITION OR SUBTRACION
68 DETERMINANT REQUIRES A SQUARE MATRIX
69 DEF FUNCTION WITH NO EXPRESSION
70 ILLEGAL DEFINED FUNCTION NAME
71 TOO MANY ARGUMENTS FOR FUNCTION
72 WRONG NUMBER OF ARGUMENTS IN FUNCTION CALL
73 TOO MANY ARGUMENTS TO USER DEFINED FUNCTION
74 NO ARRAY SPECIFIED
75 "MISSING ENDWHILE STATEMENT" /* 75 */ "NUMERIC IN STRING EXPRESSION",

EXAMPLE BASIC PROGRAMS

These can be cut and pasted into a Windows notepad file, saved as a .txt then loaded into BASIC. Making

sure that there are no intervening or trailing blank lines.

Fahrenheit to Celsius table 0 to 101 c

2000 openout temptable.txt

2100 prec 2

2200 dim f1(51)

2300 dim c1(51)

2400 dim f2(51)

2500 dim c2(51)

2600 for n = 1 to 51

2700 let c = n-1

2800 let f1(n) = 1.8*c+32

2900 let c1(n) = c

3000 next

3100 for n = 1 to 51

3200 let c = n+50

3300 let f2(n) = 1.8*c+32

3400 let c2(n) = c

3500 next

3600 printf "\n F C F C\n"

3700 printf "--\n"

3800 printf #1"\n F C F C\n"

3900 printf #1"--\n"

4000 for n = 1 to 51

4100 printf " %3.2f %3.2f | %3.2f %3.2f\n",f1(n),c1(n),f2(n),c2(n)

4200 printf #1" %3.2f %3.2f | %3.2f %3.2f\n",f1(n),c1(n),f2(n),c2(n)

4300 next

4400 closef #1

1000 rem // 3 X 3 Determinant solution

2000 rem // Solution to 3 variable simultaneous equations

2100 rem

2200 rem // a11X + a12Y + a13Z = b1

2300 rem // a21X + a22Y + a23Z = b2

2400 rem // a31X + a32Y + a33Z = b3

2500 rem

2600 print "Input values for b1, b2, b3 - like: 10,20,-30"

2700 input b1,b2,b3

2800 dim a(3,3)

2900 read a(1,1),a(1,2),a(1,3),a(2,1),a(2,2),a(2,3),a(3,1),a(3,2),a(3,3)

3000 gosub 6200

3100 let d = a1-a2+a3

3200 print "d = ";d

3300 restore

3400 read a(1,1),a(1,2),a(1,3),a(2,1),a(2,2),a(2,3),a(3,1),a(3,2),a(3,3)

3500 read a(1,1),a(2,1),a(3,1)

3600 gosub 6200

3700 let d1 = a1-a2+a3

3800 print "d1 = ";d1

3900 restore

4000 read a(1,1),a(1,2),a(1,3),a(2,1),a(2,2),a(2,3),a(3,1),a(3,2),a(3,3)

4100 read a(1,2),a(2,2),a(3,2)

4200 gosub 6200

4300 let d2 = a1-a2+a3

4400 print "d2 = ";d2

4500 restore

4600 read a(1,1),a(1,2),a(1,3),a(2,1),a(2,2),a(2,3),a(3,1),a(3,2),a(3,3)

4700 read a(1,3),a(2,3),a(3,3)

4800 gosub 6200

4900 let d3 = a1-a2+a3

5000 print "d3 = ";d3

5100 restore

5200 data 6,5,9

5300 data 2,0,1

5400 data 3,4,0

5500 data b1,b2,b3

5600 let x = d1/d

5700 let y = d2/d

5800 let z = d3/d

5900 print "x = ";x;" y = ";y;" z = ";z

6000 end

MAXIMUM FILE OPEN TEST WITH DEMONSTRATION OF FILES COMMAND

CLOSES TWO FILES THEN OPENS TWO FOR INPUT

90 rem // Tests file open for read or write up to the maximum of 8 files

95 rem // Opens 8 files, closes two, then opens two for input

96 rem // Demonstrates the files command to show how the file table

97 rem // is filled each time files are open or closed

98 rem //

100 openout aout.txt,bout.txt,cout.txt,dout.txt,eout.txt,fout.txt,gout.txt,hout.txt

200 print #1"Test 1"

300 print #2"Test 2"

400 print #3"Test 3"

500 print #4"Test 4"

600 print #5"Test 5"

700 print #6"Test 6"

800 print #7"Test 7"

900 print #8"test 8"

950 print "All file slots open for output."

1000 files

1100 closef #2

1200 closef #7

1250 print "Slot 2 and 7 closed."

1300 files

1400 openin test1.txt,test2.txt

1500 print "All input and output files closed. Only current BASIC file, currently open, if any."

1550 print "Two files open for input to fill empty slots 2 and 7."

1600 files

1700 closeall

1800 files

TEST AND DEMO OF PRINTF COMMAND

2000 let p = 3.1415926535

2200 let e = 2.71828

2300 let t = 98.6

2400 let a = 222.95

2500 printf "p = $%3.2f e = $%3.2f\tt = $%3.2f\n", p,e,t

2600 printf "p = $%3.3f e = $%3.3f\tt = $%3.3f\n", p,e,t

2700 printf "p = $%3.2f e = $%3.2f\tt = $%3.4f\n", p,e,t

2800 printf "p = $%3.2f e = $%3.2f\tt = $%3.5f\n", p,e,t

2900 printf "p = $%3.2f a = $%3.2f\tt = $%3.5f\n", p,a,t

TEST AND DEMO OF NESTED IF-THEN-ELSE WITH TAB INDENTS

1100 print "Input numbers for a,b,c,d";

1200 input a,b,c,d

1300 if a > b then

1400 if c > d then

1500 print "a > b and c > d"

1600 else

1700 print "a > b and c < d"

1800 endif

1900 else

2000 if c > d then

2100 print "a < b and c > d"

2200 else

2300 print "a < b and c < d"

2400 endif

2500 endif

2600 goto 1100

FOR-NEXT-BREAK-CONTINUE

1000 for x = 1 to 10

1500 if x > 5 then

1600 break

1650 else

1700 print x

1710 endif

1800 next

1900 print "breaked at ";x

2000 for x = 1 to 10

2100 if x > 5 then

2200 continue

2300 else

2400 print x

2500 endif

2600 next

2700 print "continued to ";x

BASIC PROGRAM TO GENERATE SIN, SQUARE, SAWTOOTH WAVES GIVEN

THE NUMBER OF HARMONICS THE FOURIER SERIES CALCULATRS OUT TO

90 expunge

100 print "Input number of Harmonics";

200 input n

300 if n = -1 then 1700

400 print "Select waveform: 1 for squarewave, 2 for sawtooth, 3 for triangle";

500 input w

600 if w <= 3 then 1200

700 print "Number ";w;" is out of range, input 1 - 3"

800 goto 400

900 rem ///////////////////////////////////

1000 rem ///Print a square wave in asterisks

1100 rem ///////////////////////////////////

1200 let a2 = 720

1300 for a = 1 to a2 step 40

1400 on w gosub 1800,3700,4700

1500 next

1600 goto 100

1700 stop

1800 rem square_f

1900 let y = 0

2000 let u = 0

2100 let s = 2

2200 for h = 1 to n step 2

2300 let u = u+((1/h)*sin(h*a))

2400 next

2500 rem Multiply Series with amplitude of 10

2600 rem Add a :carrier of 15 so that negative values

2700 rem don't get clipped

2800 let y = 10*u+15

2900 gosub 3100

3000 return

3100 rem plot_star

3200 for x = 1 to y

3300 print " ";

3400 next

3500 print "*"

3600 return

3700 rem sawtooth_f

3800 let y = 0

3900 let u = 0

4000 let s = 2

4100 for h = 1 to n step 1

4200 let u = u+(1/h)*sin(h*a+(h%2*180))

4300 next

4400 let y = 10*u+15

4500 gosub 3100

4600 return

4700 rem triangle_f

4800 let y = 0

4900 let u = 0

5000 let s = 2

5100 for h = 1 to n step 2

5200 let u = u+(n/fact(h))*cos(h*a)

5300 next

5400 let y = 10*u/h+20

5500 gosub 3100

5600 return

CALCULATE STANDARD DEVIATION AND LINEAR REGRESSION FROM DATA POINTS

1000 PRINT "FINDS AVERAGES OF TWO SETS OF NUMBERS, STANDARD"

1100 PRINT "DEVIATION FOR A GIVEN NUMBER OF X,Y PAIRS."

1200 PRINT "LISTS SUMS OF X, X SQUARED, Y, Y SQUARED AND"

1300 PRINT "SUM OF XY, AS STORED IN A SET OF REGISTERS 'R(N)'."

1400 PRINT "CALCULATES SLOPE AND INTERCEPT FOR LINEAR DIGRESSION."

1500 PRINT

1600 PRINT "FIRST ASKS WHETHER A NEW SET OF X,Y PAIRS IS TO BE"

1700 PRINT "ENTERED OR A CHANGE IS DESIRED IN ONE OF THE PAIRS"

1800 PRINT "ALREADY ENTERED."

1900 PRINT "THEN, EACH OF THE 'N' X,Y PAIRS IS REQUESTED. WHEN"

2000 PRINT "THE LAST PAIR IS ENTERED, THE RESULT IS DISPLAYED."

2100 PRINT

2200 PRINT "IF 'C' IS CHOSEN, IT ASKS WHETHER YOU WANT A NUMBERED"

2300 PRINT "LIST OF PAIRS. THEN ASKS WHICH ENTRY YOU WANT TO CHANGE."

2400 PRINT "THE MODIFIED LIST IS USED TO RE-CALCULATE."

2500 PRINT

2600 COMMON

2700 PRINT "ENTER 'N' FOR NEW VALUES OR 'C' TO CHANGE A VALUE";

2800 INPUT W$

2900 IF W$ = "N" THEN 3200

3000 IF W$ = "C" GOSUB 7400

3100 GOTO 4700

3200 EXPUNGE

3300 PRINT "INPUT NUMBER OF PAIRS:";

3400 INPUT N

3500 LET N2 = N

3600 DIM X(N)

3700 DIM Y(N)

3800 DIM R(5)

3900 PRECISION 11

4000 FOR C = 1 TO N

4100 PRINT "INPUT: X";C;",Y";C

4200 INPUT X,Y

4300 LET X(C) = X

4400 LET Y(C) = Y

4500 NEXT

4600 PRECISION 11

4700 FOR R = 1 TO 5

4800 LET R(R) = 0

4900 NEXT

5000 GOSUB 6600

5100 GOSUB 5400

5200 GOSUB 8600

5300 END

5400 FOR R = 1 TO 5

5500 PRINT "R(";R;") = ";R(R)

5600 NEXT

5700 PRINT

5800 PRINT "AVERAGE FOR X = ";R(1)/N

5900 PRINT "AVERAGE FOR Y = ";R(3)/N

6000 LET S1 = SQRT((N*R(2)-R(1)^2)/(N*(N-1)))

6100 LET S2 = SQRT((N*R(4)-R(3)^2)/(N*(N-1)))

6200 PRINT

6300 PRINT "STANDARD DEVIATION FOR X = ";S1

6400 PRINT "STANDARD DEVIATION FOR Y = ";S2

6500 RETURN

6600 FOR C = 1 TO N

6700 LET R(1) = R(1)+X(C)

6800 LET R(2) = R(2)+X(C)^2

6900 LET R(3) = R(3)+Y(C)

7000 LET R(4) = R(4)+Y(C)^2

7100 LET R(5) = R(5)+X(C)*Y(C)

7200 NEXT

7300 RETURN

7400 PRINT "LIST CURRENT VALUES? Y/N";

7500 INPUT L$

7600 IF L$ = "Y" GOSUB 8200

7700 PRINT "CHANGE VALUES FOR ELEMENT";

7800 INPUT N2

7900 PRINT "NEW VALUES FOR X AND Y:";

8000 INPUT X(N2),Y(N2)

8100 RETURN

8200 FOR C = 1 TO N

8300 PRINT "X(";C;") = ";X(C);" Y(";C;") = ";Y(C)

8400 NEXT

8500 RETURN

8600 PRINT

8700 PRINT "LINEAR REGRESSION SLOPE 'A' AND INTERCEPT 'B'"

8800 LET A = (N*R(5)-R(1)*R(3))/(N*R(2)-R(1)^2)

8900 LET B = (R(3)*R(2)-R(1)*R(5))/(N*R(2)-R(1)^2)

9000 PRINT "SLOPE A = ";A;" INTERCEPT B = ";B

9100 RETURN

MATRIX TEST AND DEMO

1000 print "Choose a matrix test."

1050 print " Type 1 for 2X2,"

1100 print " 2 for 3X3,"

1150 print " 3 for 1X2 * 2X2,"

1200 print " 4 for scaler multiply,"

1250 print " 5 for matrix add 3X3,"

1300 print " 6 for 3X3 'print,' test,"

1350 print " 7 for transpose,"

1400 print " 8 for matrix inverse 3X3,"

1450 print " 9 for MXM Identity Matrix:"

1500 input t

1550 on t gosub 1700,2650,3600,4600,5300,5950,6650,7150,7750

1600 expunge

1650 goto 1000

1700 dim a(2,2),b(2,2),c(2,2)

1750 restore

1800 mat read b

1850 mat read c

1900 data 1,-2,0,3

1950 data -3,0,1,2

2000 mat a = b*c

2050 print

2100 print "B"

2150 print

2200 mat print b

2250 print

2300 print "C"

2350 print

2400 mat print c

2450 print "A"

2500 print

2550 mat print a

2600 return

2650 dim a(3,3),b(3,3),c(3,3)

2700 restore 2850

2750 mat read b

2800 mat read c

2850 data 1,2,0,0,1,1,2,0,1

2900 data 1,1,2,2,1,1,1,2,1

2950 mat a = b*c

3000 print

3050 print "B"

3100 print

3150 mat print b

3200 print

3250 print "C"

3300 print

3350 mat print c

3400 print "A"

3450 print

3500 mat print a

3550 return

3600 dim a(1,2),b(1,2),c(2,2)

3650 restore 3850

3700 mat read b

3750 mat read c

3800 rem

3850 data -1,0

3900 data 0,2,-3,1

3950 mat a = b*c

4000 print

4050 print "B"

4100 print

4150 mat print b

4200 print

4250 print "C"

4300 print

4350 mat print c

4400 print "A"

4450 print

4500 mat print a

4550 return

4600 dim a(3,3)

4650 dim b(3,3)

4700 print "Input a scaler multiplier";

4750 input m

4800 restore 5200

4850 mat read b

4900 read b(3,1),b(3,2),b(3,3)

4950 mat read b

5000 mat A = (m)*B

5050 mat print b

5100 print

5150 mat print a

5200 data 1,2,3,4,5,6,7,8,9

5250 return

5300 dim a(3,3),b(3,3),c(3,3)

5350 restore 5800

5400 mat read b

5450 mat read c

5500 mat a = b+c

5550 mat print b,

5600 print

5650 mat print c,

5700 print

5750 mat print a,

5800 data 1,2,3,4,5,6,7,8,9

5850 data 9,8,7,6,5,4,3,2,1

5900 return

5950 dim a(3,3)

6000 mat read a

6050 mat print a

6100 print

6150 restore 6450

6200 mat read a

6250 mat print a,

6300 data 6,4,3

6350 data 2,6,4

6400 data 3,4,0

6450 data -3.1415,222.22,33.5

6500 data 196.5,197.8,199.1

6550 data 7.4,2.5,-3.3

6600 return

6650 print "Transpose"

6700 dim a(4,4),b(4,4)

6750 restore 7050

6800 mat read b

6850 mat a = trn(b)

6900 mat print b

6950 print

7000 mat print a

7050 data 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

7100 return

7150 print "Input size of matrix < 6:";

7200 input s2

7250 dim a(s2,s2),b(s2,s2)

7300 restore 7600

7350 mat read b

7400 mat a = inv(b)

7450 mat print b

7500 print

7550 mat print a

7600 data 6,5,4,8,20,40,50,30,2,100,40,75,45,33.3,78

7650 data 100,340,201,659,3.4,5.5,6.6,3.3,83.33

7700 return

7750 print "Input size of identity matrix:";

7800 input s

7850 print

7900 print "Identity"

7950 dim a(s,s)

8000 mat a = idn(s,s)

8050 print

8100 mat print a

8150 return

Types of Matrices
There are many different types of matrices in linear algebra. All types of matrices are differentiated
based on their elements, order, and certain set of conditions. The word "Matrices" is the plural form of a
matrix and is the less commonly used to denote matrices. In this article, let's learn about some of the
commonly used types of matrices, their definition with examples.

What are Different Types of Matrices?

This article describes some of the important types of matrices that are used in mathematics,
engineering, and science. Here is the list of the most commonly used types of matrices in linear algebra:

 Row Matrix
 Column Matrix
 Singleton Matrix
 Rectangular Matrix
 Square Matrix
 Identity Matrices
 Matrix of ones
 Zero Matrix
 Diagonal Matrix

We can use these different types of matrices to organize data by age group, person, company, month,
and so on. We can then use this information to make decisions and solve a lot of math problems.

Identifying Types of Matrices Based on Dimension

Matrices are in all sorts of sizes, but usually, their shapes remain the same. The size of a matrix is called
its dimension which is the total number of rows and columns in a given matrix. In the below-given
image, we can see how the dimension of a matrix is calculated.

https://www.cuemath.com/algebra/

In this section, let's learn to identify the types of matrices based on their dimension:

Row and Column Matrix

Matrices with only one row and any number of columns are known as row matrices and matrices

with one column and any number of rows are called column matrices. Let's look at two examples

below:

Row Matrix Column Matrix

A=[1024]

 B=⎡⎢⎣325⎤⎥⎦

There is only one row, so A is a row matrix. There is only one column, so B is a column matrix.

Rectangular and Square Matrix

https://www.cuemath.com/algebra/row-matrix/
https://www.cuemath.com/algebra/column-matrix/

Any matrix that does not have an equal number of rows and columns is called a rectangular

matrix and a rectangular matrix can be denoted by [B]m×n

. Any matrix that has an equal number of rows and columns is called a square matrix and a square

matrix can be denoted by [B]n×n

. Let's look at the examples below:

Rectangular Matrix Square Matrix

B=⎡⎢⎣2−13505271−1−29⎤⎥⎦

 C=⎡⎢⎣2−130521−1−2⎤⎥⎦

There are three rows and four columns in this

matrix, so B is a rectangular matrix.
There are three rows and three columns in this

matrix, so C is a square matrix.

Constant Matrices

Constant matrices are matrices in which all the elements are constants for any given

dimension/size of the matrix. The matrix elements are denoted by bij

. Let's look at these types of matrices whose elements are always constant.

Identity Matrix Matrix of Ones Zero Matrix

The identity matrix is a square diagonal matrix, in

which all entries on the main diagonal are equal to 1,

and the rest of the elements are equal to 0. It is

denoted by I.

Any matrix in which all

the elements are equal

to 1 is called a matrix of

ones.

Any matrix in which all

the elements are equal

to 0 is called a zero

matrix.

I=⎡⎢⎣100010001⎤⎥⎦

 C=⎡⎢⎣111111111⎤⎥⎦

 D=⎡⎢⎣000000000⎤⎥⎦

Other Types of Matrices

https://www.cuemath.com/algebra/square-matrix/
https://www.cuemath.com/algebra/identity-matrix/

Apart from the most commonly used matrices, there are other types of matrices that are used in

advanced mathematics and computer technologies. Following are some of the other types of

matrices:

Singular and Non-singular Matrix

Any square matrix whose determinant is equal to 0 is called a singular matrix and any matrix

whose determinant is not equal to 0 is called a non-singular matrix. Determinant of a matrix can

be found by using determinant formula. Let's look at two examples below:

Singular Matrix

Non-

singular

Matrix

C =

⎡⎢⎣111111111⎤⎥⎦

D =

⎡⎢⎣211121111⎤⎥⎦

|C| = ∣∣
∣∣111111111∣∣

∣∣

|D| = ∣∣
∣∣211121111∣∣

∣∣

|C| =

1×∣∣∣1111∣∣∣−1×∣∣∣1111∣∣∣+1×∣∣∣1111∣∣∣

|D| =

2×∣∣∣2111∣∣∣−1×∣∣∣1111∣∣∣+1×∣∣∣1211∣∣∣

=1×(1×1-

1×1)-1×(1×1-

1×1)+1×(1×1-

1×1)

=2×(2×1-

1×1)-1×(1×1-

1×1)+1×(1×1-

2×1)

https://www.cuemath.com/algebra/singular-matrix/
https://www.cuemath.com/determinant-formula/

=1×(1-1)-

1×(1-

1)+1×(1-1)

=1×(0)-

1×(0)+1×(0)

=0+0+0

=0

=2×(2-1)-

1×(1-

1)+1×(1-2)

=2×(1)-

1×(0)+1×(-1)

=2-0-1

=1

Here, |C| = 0,

so C is a

singular matrix

Here, |D| ≠ 0,

so D is a non-

singular matrix

Diagonal Matrix

A square matrix in which all the elements are 0 except for those elements that are in the diagonal

is called a diagonal matrix. Let's take a look at the examples of different kinds of diagonal

matrices: A scalar matrix is a special type of square diagonal matrix, where all the diagonal

elements are equal.

Diagonal Matrix Scalar Matrix

B = ⎡⎢ ⎢ ⎢⎣1000050000200004⎤⎥ ⎥ ⎥⎦

 C = ⎡⎢⎣300030003⎤⎥⎦

Here, we can see that except for the diagonal

elements, all the other elements are zero. Hence,

B is a diagonal matrix.

Here, we can see that the diagonal elements are

equal and all the other elements are zero. Hence,

C is a scalar matrix.

Upper and Lower Triangular Matrix

An upper triangular matrix is a square matrix where all the elements that are present below the

diagonal elements are 0. A lower triangular matrix is a square matrix where all the elements that

are present above the diagonal elements are 0. Let's look at the examples below:

Upper Triangular Matrix Lower Triangular Matrix

B = ⎡⎢⎣321045006⎤⎥⎦

https://www.cuemath.com/algebra/diagonal-matrix/

 C = ⎡⎢⎣300410279⎤⎥⎦

Here, we can see that all the elements that are

present below the main diagonal are 0. Hence, B

is an upper triangular matrix.

Here, we can see that all the elements that are

present above the main diagonal are 0. Hence, B

is an upper triangular matrix.

Symmetric and Skew Symmetric Matrix

A square matrix D of size n×n is considered to be symmetric if and only if DT= D. A square

matrix F of size n×n is considered to be skew-symmetric if and only if FT= - F. Let's consider the

examples of two matrices D and F:

Symmetric Matrix Skew-symmetric Matrix

D = ⎡⎢⎣236345659⎤⎥⎦

DT = ⎡⎢⎣236345659⎤⎥⎦

 F = [03−30]

FT = [0−330]

-F = [0−330]

Here, D = DT. Hence, D is a symmetric matric. Here, FT = -F. Hence F is a skew-symmetric matrix.

Boolean Matrix

A matrix is considered to be a boolean matrix when all its elements are either 1s and 0s. Let's

consider the example of the matrix B to understand this better:

B = ⎡⎢⎣010101011⎤⎥⎦

Stochastic Matrices

A stochastic matrix is a type of matrix whose all entries represent probability. A square matrix C

is considered to be left stochastic when all of its entries are non-negative and when the entries in

each column sum to 1. Similarly, a matrix with all its entries as non-negative such that entries in
each row sum to 1 is called a right stochastic matrix. Consider the example of the matrix C here:

C = ⎡⎢⎣0.30.40.50.30.40.30.40.20.2⎤⎥⎦

https://www.cuemath.com/algebra/symmetric-matrix/
https://www.cuemath.com/algebra/skew-symmetric-matrix/

Orthogonal Matrix

A square matrix B is considered to be an orthogonal matrix, when B × BT = I, where I is an

identity matrix and BT is the transpose of matrix B. Take an example of the matrix B:

B =[0110]

 BT =[0110]

B × BT = [0110]×[0110]

= [0+10+00+01+0]

= [1001]

Here, we can see that B × BT = I. Hence, B is an orthogonal matrix.

https://www.cuemath.com/algebra/orthogonal-matrix/

WISH LIST for 2022

Add step ability in while loop

Generalized logic expressions for if and while if a > b and c < d or e < f, etc.

mat redim (redimension)

mat a = eigen(b)

Graphics

Port to Windows

Port to Linux

